Sutherland & Associates Planning

Detailed Site Investigation: 21 Vincents Road, Kurrajong, NSW

.....

J L

WASTEWATER

GEOTECHNICAL

CIVIL

PROJECT MANAGEMENT

P2007700JR10V01 October 2021

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a Detailed Site Investigation in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Sutherland & Associates Planning (hereafter known as the Client). The scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a reevaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© October 2021 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office Suite 201, 20 George St Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 Phone: +61-2-9476-9999 Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status						
Author(s)		Reviewer(s)		Project Manager		Signature	
William Xu		Ben McGiffin		Terry Harvey		Ben M	biffin
				Document Location			
Revision No.	Description	Status	Release Date	File Copy	Sutherland & Associates Planning		
1	Final for DA submission	Final	29.10.2021	1E,1P,1H	1P		

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	7
1.1 Overview	7
1.2 Proposed Development	7
1.3 Objectives	7
1.4 Scope of Works	8
1.5 Reference Guidelines	8
2 SITE BACKGROUND INFORMATION	9
2.1 Site Details	9
2.2 Hydrogeology	9
3 PREVIOUS SITE INVESTIGATIONS	11
3.1 Preliminary Site Investigation	11
4 CONCEPTUAL SITE MODEL	12
5 SAMPLING, ANALYTICAL AND QUALITY PLAN	13
5.1 Data Quality Objectives	13
5.2 Data Quality Indicators	15
5.3 Methodology and Quality Assurance / Quality Control	16
5.4 Laboratory Analytical Suite	16
6 SITE ASSESSMENT CRITERIA	18
7 RESULTS	19
7.1 General Field Observations	19
7.2 Soil Conditions	19
7.3 Analytical Results	19
7.3.1 Soil Results	20
7.3.2 Data QA / QC	20
8 DISCUSSION	21
9 CONCLUSIONS AND RECOMMENDATIONS	
10 LIMITATIONS	23
11 REFERENCES	24

Attachments

ATTACHMENT A : SITE PLANS ATTACHMENT B : PROPOSED DEVELOPMENT PLANS ATTACHMENT C : BOREHOLE LOGS ATTACHMENT D : LABORATORY SUMMARY TABLES ATTACHMENT E : DATA VALIDATION REPORT ATTACHMENT F : LABORATORY CERTIFICATES

Tables

Table 1: Site information	9
Table 2: Available hydrogeological information.	10
Table 3: PSI (MA, 2021) summary.	11
Table 4: AEC and COPC	12
Table 5: Conceptual site model.	12
Table 6: Data quality objectives.	14
Table 7: Data quality indicators.	15
Table 8: Investigation and sampling methodology	16
Table 9: Summary of soil laboratory analyses.	17
Table 10: Site assessment criteria.	18
Table 11: Summary of soil analytical results.	20

General Abbreviations

AASS	Actual acid sulfate soil
ABC	Ambient background concentrations
ACM	Asbestos containing material
AEC	Area of environmental concern
AF	Asbestos fines
AMP	Asbestos Management Plan
ANZECC	Australia and New Zealand Environment Conservation Council
ANZG	Australian and New Zealand Governments
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure (2013)
ASS	Acid sulfate soil
ASSMAC	Acid Sulfate Soils Management Advisory Committee
AST	Above ground storage tank
BGL	Below ground level
BH	Borehole
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene
CEMP	Construction Environmental Management Plan
сос	Chain of custody
COPC	Contaminants of potential concern
DA	Development application
DBT	Dibutyltin
DEC	Department of Environment and Conservation
DECC	Department of Environment and Climate Change
DNAPL	Dense non aqueous phase liquid
DRAIL	Deposited Plan
DPI	NSW Department of Primary Industry
DPIW	NSW Department of Primary Industry – Water
DRIW	Data quality indicators
DQO	
	Data quality objectives
DSI	Detailed Site Investigation
EAC	Ecological assessment criteria
EIL	Ecological investigation level
EMP	Environmental Management Plan
EPA	NSW Environmental Protection Authority
EQL	Estimated quantitation limit (interchangeable with PQL and LOR)
ESA	Environmental Site Assessment
ESL	Ecological screening level
FA	Fibrous asbestos
GIL	Groundwater investigation level
HIL	Health investigation level
HM	Heavy metals
HSL	Health screening level
IA	Investigation area
ISQG	Interim Sediment Quality Guideline
ITP	Inspection Testing Plan
LGA	Local government area
LNAPL	Light non aqueous phase liquid
LOR	Limit of reporting (interchangeable with EQL and PQL)
MA	Martens & Associates Pty Ltd
	Metres, Australian Height Datum
mAHD	Meries, Australian neight Daronn

MBT	MonobutyItin
MNA	Monitored natural attenuation
MPE	Multi phase extraction
NAPL	Non aqueous phase liquid
NATA	National Association of Testing Authorities
ND	No data
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
OCP	Organochloride pesticides
OEH	NSW Office of Environment and Heritage
OPP	Organophosphorus pesticides
PACM	Potential asbestos containing material
PAH	Polycyclic aromatic hydrocarbons
PASS	Potential acid sulfate soil
РСВ	Polychlorinated biphenyl
PCEMP	Post Construction Environmental Management Plan
PESA	Preliminary Environmental Site Assessment
PFAS	Per and polyfluoroalkyl substances
PID	Photoionisation detector
ppb	Parts per billion
ppm	Parts per million
PQL	Practical quantitative limit (interchangeable with EQL and LOR)
PSI	Preliminary Site Investigation
QA/QC	Quality assurance / quality control
RAC	Remediation acceptance criteria
RAP	Remedial Action Plan
HHRA	Human Health Risk Assessment
RPD	
	Relative percentage difference
SAC	Site assessment criteria
SAQP	Sampling and Analysis Quality Plan
SEPP	State Environmental Planning Policy
SIL	Soil investigation level
SOP	Standard operating procedure
SWL	Standing water level
SWMS	Safe Work Method Statement
TB	Trip blank
TBT	Tributyl tin
TCLP	Toxicity characteristics leaching procedure
TEQ	Toxic equivalency factor
TP	Test pit
TPH	Total petroleum hydrocarbons
TRH	Total recoverable hydrocarbons
TS	Trip spike
UCL	Upper confidence limit
UPSS	Underground petroleum storage system
UST	Underground storage tank
VHC	Volatile halogenated compounds
VOC	Volatile organic compounds
WHS	Work health and safety
WHSP	Work Health and Safety Plan

Detailed Site Investigation – 21 Vincents Road, Kurrajong, NSW P2007700JR10V01 – October 2021

1 Introduction

1.1 Overview

This report prepared by Martens and Associates (MA) documents a Detailed Site Investigation (DSI) on behalf of Sutherland & Associates Planning (the Client) to support a development application (DA) to Hawkesbury City Council (Council) for a residential development at 21 Vincents Road, Kurrajong, NSW (Lot 6 DP 270827) ('the site').

The investigation area (IA) for this DSI is the entire site as shown in Attachment A.

A Preliminary Site Investigation (PSI) was been previously prepared by MA (MA 2021) which recommended a programme of soil investigation to assess the contamination status of the site.

1.2 Proposed Development

The proposed site development of 'Tallowood – Stage 2' (Envirowood, 2021) involves the construction of multiple seniors living residential developments and parklands.

The proposed development plans are shown in Attachment C.

1.3 Objectives

The objectives for this DSI are:

- Identification of historical and current potentially contaminating site activities.
- Evaluation of areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) within the IA.
- Provide comment on the suitability of the IA for the proposed Stage 2 development, and where required, provide recommendations for additional investigations and / or remediation.

1.4 Scope of Works

The scope of works includes:

- Review of previous site documentation (MA, 2021).
- Intrusive subsurface investigation and sampling.
- Laboratory analysis of samples for COPC.
- Preparation of a report in general accordance with the relevant sections of ASC NEPM (2013), NSW EPA (2017) and NSW EPA (2020).

1.5 Reference Guidelines

This assessment was prepared in general accordance with the following guidelines:

- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure. Referred to as ASC NEPM (2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (1995) Sampling Design Guidelines.
- NSW EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

2 Site Background Information

2.1 Site Details

Site information is summarised in Table 1, with the site area and general surrounds plans provided in Attachment A

 Table 1: Site information.

Item	Description / Detail		
Site address	21 Vincents Road, Kurrajong, NSW		
Legal Identifier	Lot 6 DP 270827		
Approximate area	5.4 ha (SIX Maps, 2020)		
Local Government Area	Hawkesbury City Council		
Current zoning and land use	Zoned RU1 – Primary Production (Hawkesbury LEP, 2012). Site is currently used for rural purposes.		
Proposed land use	Residential seniors living development.		
Surrounding land uses	 The site is bounded by: Vincents Road to the southwest. Old Bells Line of Road to the west. Low-density residential properties and pasture land to the north, east and south. 		
Topography	The site contains slopes 50% in the western part of the site and 15% to 20% in the central and eastern part. The site aspect is generally east and southeast. Site elevation ranges between 171 mAHD in the northwest and 120 mAHD in the southeast (Environa Studio, 2020).		
Expected geology	The Penrith 1:100,000 Geological Sheet 9030 describes site geology as Bringelly Shale, Ashfield Shale and Minchinbury Sandstone Formation within the Wianamatta Group. The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Luddenham landscape consisting of shallow dark podzolic soils on upper slopes.		

2.2 Hydrogeology

Review of WaterNSW Real-time Water Database, indicated one groundwater bore within 500 m of the site, with the groundwater bore summarised in Table 2.

T	A			·
Table 2:	Avaliable	nyarogeo	iogicai	information.

Bore Identification	Record Date	Intended Use	Standing Water Level (mbgl)	First Water Bearing Zone (mbgl) and Substrate	Distance and Direction from IA
GW104396	1982	Stock, domestic	Not available	Not available	On site
GW100708	1996	Stock, industrial, domestic, irrigation	38	3 – 55 Shale	98 m north
GW107452	2005	Household	2	0 - 6 Clay, brown shale	126 m south west
GW111034	2010	Household	30	15 - 84 Clay	267 m south west

Groundwater inflow was not encountered during the drilling of boreholes for this DSI.

Ephemeral perched groundwater may be encountered within the soil profile at times of, and following heavy or extended rainfall.

Should further information on permanent site groundwater conditions be required, an additional assessment would need to be carried out (i.e., installation of groundwater monitoring bores / ongoing groundwater monitoring).

3 **Previous Site Investigations**

3.1 Preliminary Site Investigation

A PSI (MA, 2021) was completed for the site, which identified potential sources of contamination. Key findings are summarised in Table 3.

Table 3: PSI (MA, 2021) summary.

Investigation Details	Investigation Task and Finding
Scope of works	Desktop review of previous reports, aerial photographs, online databases and land title information. Review of local geology, hydrogeology and topography maps. Site walkover to review existing site conditions.
Key findings of historical site review and walkover	Aerials indicate that the site primarily consisted of rural land use with a sustained period of agricultural use (orchards) in the northern and western portions of the site. Generally, the site has remained largely undeveloped. The current site structures have been present from at least 2010 (based on aerial photographs) and no evidence of additional significant development occurring during this time. The site walkover identified that for the western portion: Thickly vegetated along boundary. Concrete water tanks.
	Norther portion:
	 Rows of trees and a formal memorial garden. Cut and fill activities (small pad) south of the formal memorial garden.
	 Natural drainage depression close to the northern boundary.
	Southern Portion:
	 Large wooden shed with upper floor maybe a small residence. Small metal shed (access was not possible) which may contain oils and fuels. A wooden chicken coop which was empty at the time of inspection. Cut and fill retaining walls to the west of the chicken coop. An animal pen with fill pad from levelling. Minor building waste (fragments of tile, glass and pipe) was observed next to the pen on the surface.
	 Central and Eastern portion: An area of burnt rubbish.
	o Three dams and a galvanised steel pump house.o Potential filling on the dam walls.
Identified AEC and COPC	 Identified AEC and COPC were: Sheds with COPC consisting of asbestos, heavy metals, hydrocarbons and pesticides. Former and existing orchard use with COPC consisting of heavy metals and pesticides. Potential filling from unknown sources with COPC consisting of asbestos, heavy metals, hydrocarbons and pesticides. Burnt areas with COPC consisting of heavy metals and hydrocarbons.
Recommendations	DSI incorporating soil sampling and analysis for COPC within the AEC at the site.

4 Conceptual Site Model

The following assessment of AEC and COPC (Table 4) has been made for the site based on observations from the site walkover and the findings of the PSI (MA, 2021).

 Table 4: AEC and COPC.

AEC	Description	COPC
AEC A Sheds including 1 m curtilage	Pesticides and heavy metals may have been used underneath existing sheds for pest control. Building construction may include PACM, zinc treated (galvanised) metals, and lead based paints. Sheds may have previously stored fuels, oils and chemicals.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos
AEC B Former and existing orchard use	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as rural uses.	HM and OCP / OPP
AEC C Potential filling	Site walkover observations have identified areas where cut and fill activities may have occurred. This process may have introduced fill from unknown origins.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos
AEC D Burnt areas	Areas where timber, rubbish and other materials may have been burnt may have introduced contamination to the soil.	HM, TRH, BTEXN and PAH

A conceptual site model (CSM), based on the AEC and COPC identified in Table 4, and the associated exposure pathways to potential receptors are summarised in Table 5.

Table 5: Conceptual site model.
--

Affected Media	Soil has been identified as the primary source of contamination for the site. Groundwater underlying the site is not expected to be a contaminant source based on the PSI.
Potential Receptors	Potential on site human receptors include future residents and staff, as well as construction and maintenance workers. Potential off site human receptors include and current and future users of adjacent land. Potential ecological receptors include flora and fauna that may inhabit or migrate through the site and adjacent land.
Potential Exposure Pathways	At the time of this DSI, the site was grassed with scattered trees. Potential exposure pathways include ingestion, dermal absorption, and inhalation of dust (for all contaminants) and vapours (for volatile hydrocarbons). Given the proposed development will include minor earthworks, a pathway between contaminants and potential site receptors may become complete.

martens

5 Sampling, Analytical and Quality Plan

A Sampling Analytical and Quality Plan (SAQP) was developed to ensure that data collected for the DSI is representative and provides a robust basis for site assessment decisions. Preparation of the SAQP was completed in general accordance with ASC NEPM (2013) methodology and includes:

- Data quality objectives (DQO).
- Data quality indicators (DQI).
- Sampling methodologies and procedures.

Field screening methods:

- Sample handling, preservation and storage procedures.
- Analytical QA / QC.

The following sections summarise the DQO, DQI and QA / QC.

5.1 Data Quality Objectives

DQO were prepared as statements specifying qualitative and quantitative data required to support project decisions. DQO were prepared in general accordance with NSW EPA (2017), EPA (2014) and NEPM (2013) guidelines, and are presented in Table 6.

Table 6: Data quality objectives.

Step 1 Stating the Problem	Review of previous site documentation identified potential contaminants that might be accessible to human and environment receptors during construction of the proposed residential development. This DSI is required to assess risk posed by COPC in the identified AEC to receptors.
Step 2 Identifying the Decision(s)	 To assess the suitability of the site for future land use, decisions are to be made based on the following questions: What is the contaminant exposure pathway? Has previous or current site use impacted the IA that may pose a risk to humans or the environment for future land use? Does the IA require remediation or management prior to constructing the proposed development?
Step 3 Identification of Inputs to the Decision	 The inputs to the assessment include: Field observations made during intrusive investigation works. Soil sampling at nominated locations across the IA. Laboratory analytical results for relevant COPC. Assessment of analytical results against site suitable guidelines.
Step 4 Study Boundary Definitions	 Study boundaries are as follows: Lateral – Lateral boundary of the assessment is defined by the IA boundary. Vertical – Vertical boundary is governed by the maximum depth reached during subsurface investigations. Temporal – One round of soil sampling has been undertaken at this stage.
Step 5 Development of Decision Rules	The decision rule for this investigation is as follows: If the concentration of contaminants exceeds the adopted assessment criteria, a risk assessment is required. Should the risk be unacceptable, further investigations to remediate and / or manage the onsite impacts, in relation to the proposed development, will be undertaken.
Step 6 Specification of Limits on Decision Errors	Guidance found in ASC NEPM (2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect.
Step 7 Optimisation of Sampling Design	Proposed sampling locations shall provide even coverage across the IA in the identified AEC. Sampling shall attempt to ensure that critical locations are assessed, sampled, and analysed for appropriate contaminants of concern. Soil sampling locations were set subject to site access and selected using a combined judgemental and grid pattern across the IA. Based on the area of the site, the sample density meets the minimum number of sampling points (including boreholes from MA, 2021b) required for site characterisation outlined in Table A of NSW EPA (1995) Sample Design Guidelines.

5.2 Data Quality Indicators

In accordance with NSW EPA (2017), the investigation data set has been compared with DQI outlined in Table 7 to ensure that collected data meets the project needs and that DQO has been met.

Table	7:	Data	auality	indicators.
10010	•••	Dara	quanty	indicators.

Assessment Measure (DQI)	Comment
Precision – A measure of the variability (or reproducibility) of data.	Precision is assessed by calculating the relative percent difference (RPD) between blind field duplicates and primary samples. Data precision is deemed acceptable where results are 0 - 10 x EQL or where RPDs <50% (10 - 30 x EQL) or <30% (>30 x EQL).
	Exceedance of this range may still be considered acceptable where heterogeneous materials such as fill are sampled.
Accuracy – A measure of the closeness of reported data to the "true value".	 Data accuracy is assessed by: Field spikes and blanks. Laboratory control samples.
Representativeness – The confidence that data are representative of each media present on the site.	 To ensure data representativeness the following field and laboratory procedures are followed: Ensure that the design and implementation of the sampling program have been completed in accordance with MA standard operating procedures (SOP). Trip blank and trip spike samples shall be used for volatiles during field sampling to ensure no cross contamination or laboratory artefacts. Ensure that all laboratory hold times are met and that sample handling and transport are completed in accordance with the MA SOP.
Completeness – A measure of the amount of usable data from a data collection activity.	 To ensure data set completeness, the following is required: Confirmation that all sampling methodology was completed in general accordance with the MA SOP. COC and receipt forms. Results from all laboratory QA / QC samples (lab blanks, trip blank, trip spike, lab duplicates). NATA accreditation stamp on all laboratory reports.
Comparability - The confidence that data may be considered to be equivalent for each sampling and analytical event.	 Data comparability is maintained by ensuring that: All site sampling events are undertaken following methodologies outlined in MA SOP and published guidelines. NATA accredited laboratory methodologies shall be followed on all laboratory analysis.

5.3 Methodology and Quality Assurance / Quality Control

Site investigation and soil sampling methodology as shown in Table 8, was completed to meet the project DQO.

Table 8: Investigation ar	nd sampling methodology.
---------------------------	--------------------------

Activity	Detail / Comments
Fieldworks	 Subsurface soil investigations were completed on 15 October 2021 and involved: Excavation of 8 boreholes (BH301 – 306) at the crest of dam walls using a hydraulic hand push tube up to a maximum investigation depth of 1.7 mbgl. Excavation of 41 surface samples across the site using a mattock up to 0.2 mbgl. Collection of 2 dam silt samples using a shovel within site dams. Collection and analysis of representative soil samples, with 33 of the 41 samples being laboratory analysed as triple composites. Collection of number QA / QC samples for laboratory analysis. Soil sampling locations are shown in Attachment A and borehole logs are provided in Attachment C.
Soil sampling	Soil sampling was completed by the MA environmental consultant using a clean pair of nitrile gloves for each sample. Each sample was placed into a laboratory supplied, 250 mL glass jar with no headspace to limit volatile loss and labelled with a unique identification number.
QA / QC sampling	 QA samples were collected for the initial investigation as follows: Three soil duplicate sample was collected for intra laboratory analysis during investigations. One soil trip blank and one trip spike sample were used during soil sampling.
Sample handling and transport	Sample collection, storage and transport were conducted according to MA SOP. Collected soil samples were placed immediately into an ice chilled cooler box. Samples were dispatched to NATA accredited laboratories under chain of custody documentation within holding times.

5.4 Laboratory Analytical Suite

Laboratory analysis was carried out by Envirolab Pty Ltd a NATA accredited laboratory. 33 of the 41 surface samples were analysed by the laboratory as triple composite samples (C01 to C11). Summary of laboratory analyses is provided in Table 9. Laboratory chain of custody documentation are provided in Attachment F.

Table 9: Summary of soil laboratory analyses.

COPC	Primary Samples Analysed	Composite Samples Analysed	QA / QC Samples Analysed
BTEXN	8	-	1 trip spike
TRH	8	-	1 trip blank
РАН	8	-	-
Heavy metals ¹	18	11	1 duplicate
OCP / OPP	18	11	-
Asbestos in soil	8	-	-

<u>Notes</u>

¹Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc.

6 Site Assessment Criteria

The site assessment criteria (SAC) adopted for this DSI, are listed in Table 10 and derived from the ASC NEPM (2013).

Media	Adopted Guidelines	Applicability
Soil	ASC NEPM	Health investigation levels (HIL)
	(2013)	HIL A – Residential was adopted based on the proposed land use as a residential development.
		Health screening levels (HSL)
		HSL A – Residential land use for sand was adopted based on granular natural and fill material.
		Ecological Investigation Levels (EIL)
		EILs were derived from methodology from ASC NEPM (2013) for the protection of terrestrial ecosystems for urban residential areas and public spaces.
		Ecological Screening Levels (ESL)
		ESL – Urban Residential, coarse soil.
		Management Limits
		Residential land use, coarse soil.
		Asbestos
		Assessed on a detect / non detect basis.

 Table 10: Site assessment criteria.

7 Results

7.1 General Field Observations

DSI field investigations and detailed site walkover were undertaken on 15 October 2021. All locations were examined for signs of contamination (odours, staining etc.). The following observations were made:

- Previously observed burnt area was vegetated with grass.
- No visual or olfactory forms of contamination.
- There were little to no changes to the site from the PSI (MA, 2021) walkover inspection.

7.2 Soil Conditions

Intrusive investigations included 8 boreholes undertaken with a hydraulic hand push tube. Subsurface conditions generally consisted of brown silty clay fill up to 1.7 mbgl. Natural residual soil (yellow brown silty clay) was encountered beneath overlying fill to a maximum depth of 1.7 mbgl.

The encountered fill material displayed no visual indications of potential contamination such as building waste inclusions, soil staining or odours.

Borehole locations are shown on the sampling plan in Attachment A and borehole logs are provided in Attachment C.

7.3 Analytical Results

The following sections summarise the results of laboratory analysis. Detailed tabulated results showing individual sample concentrations compared to the adopted SAC are available in Attachment D. Laboratory analytical documentation is available in Attachment F.

A figure showing identified areas of contamination is provided in Attachment A.

7.3.1 Soil Results

Laboratory analytical results are summarised in Table 11.

Table 11: Summar	y of soil analytical results.

Analyte	Results Compared to SAC
Heavy metals	HIL All results below the SAC. <u>EIL</u> All results below the SAC.
TRH/BTEXN	HSL All results below SAC. ESL All results below SAC.
OCP/OPP	HIL All results below SAC.
РАН	HIL All results below the SAC. HSL All results below SAC. ESL All results below SAC.
Asbestos in soil	No asbestos detected.

7.3.2 Data QA / QC

Field QA / QC data was collected as per the SAQP. A review of QA / QC procedure has been completed and is presented in the data validation report in Attachment E.

The report concludes that data is suitable for the purposes of the assessment.

8 Discussion

This DSI was undertaken by MA to assess the site to determine the suitability for the proposed senior living residential development. The PSI (MA, 2021) identified sheds, former and existing orchard use, burnt areas and potential presence of fill material from unknown origins as AECs, which may have introduced a wide range of COPCs including hydrocarbons, pesticides, heavy metals and asbestos.

Works for this DSI works consisted of 8 boreholes at the crest of dam walls and 41 surface samples completed across accessible locations areas of the site which exceeds the minimum sample density requirements for characterisation outlined in the NSW EPA (1995) guidelines. These locations were placed in a general grid pattern across the site to provide appropriate coverage.

Fill (up to 1.7 mbgl) was encountered across the site which did not consist of anthropogenic inclusions or any obvious visual or olfactory signs of contamination.

Samples collected during the investigation works from areas of site filling, former orchard areas and from dam sediments were analysed for COPC associated with potential site contamination sources as outlined in the CSM. Analytical results found no exceedances of the adopted assessment criteria for human health and ecological receptors.

Based on site observations and the results of both subsurface and analytical investigations, the potential risk to human and ecological receptors in the site is considered to be low and no further contamination investigation is required.

9 Conclusions and Recommendations

The findings of subsurface investigation and laboratory assessment of collected soil samples show that all COPC reported concentrations below the adopted assessment criteria. Based on these results, the potential risk to receptors is considered to be low and no further contamination investigation is required. The site is considered to be suitable for the proposed senior living residential development.

It is noted that a site shed is currently located within the IA which was identified as a potential AEC (adjacent to sample SS03 shown in Attachment A). If the proposed works involve the demolition of this shed, it is recommended that further soil sapling is undertaken with the shed footprint to confirm no unexpected contamination is present.

If any unexpected finds (such as PACM, odours or soil staining) are encountered during site works or as part of post demolition inspections, the unexpected find will require assessment by MA to determine requirements for additional investigation and / or remedial action.

Where any soil material is to be removed from site, a formal waste classification assessment shall be required in accordance with the NSW EPA Waste Classification Guidelines (2014).

10 Limitations

This DSI was undertaken in accordance with current industry standards.

It is important to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land uses. This is particularly the case where onsite filling has occurred or restrictions of sampling due to site access. Therefore, this report should not be read as a guarantee that only contamination identified shall be found on the site. Should material be exposed in future which appears to be contaminated, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of assessing potential site contamination. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

11 References

- Environa Studio (2021) Tallowood Stage 2 (Senior Living), Project No. 1036, Dwg No. 2.
- Martens & Associates (2021) Preliminary Site Investigation, Job No. P2007700JR05V01.
- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure. Referred to as ASC NEPM (2013).
- NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines.
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

Attachment A: Site Plans

0 10 20 30 40 50 m

1:1500 @ A3

Map Title / Figure: Sampling Plan

Мар Site Project Client Date

Map 01 21 VINCENTS ROAD, KURRAJONG, NSW PROPOSED RESIDENTIAL DEVELOPMENT DETAILED SITE INVESTIGATION Sub-Project

> SUTHERLAND PLANNING 26/10/2021

Attachment B: Proposed Development Plans

notes	rev	date	amendment	rev	date	amendment	environa studio	project	location
all work to be carried out in accordance with	J	21/7/20	issue to client	R	26/10/20	D issue to client		TALLOWOOD STAGE 2	21 VINCENTS ROAD
bca, saa codes and conditions of council.			issue to consultants			issue to consultants	224 riley st surry hills 2010	(SENIORS LIVING)	
measurements in mm's unless noted. use			issue to client			b issue to client		(020)	
figured dimensions. do not scale drawings.			issue to client			b issue to client	t: 02 9211 0000	for/client	at
site measure before starting work.			issue to client				w: www.environastudio.com.au	lon on one	
refer all discrepancies to the architect.			issue to client			b issue to client			KURRAJONG
			issue to client			b issue to client	architects registration number 6239		
	R	12/10/20	issue to client	Х	01/02/2	1 issue to client			

drawing SITE PLAN 1:2000	stage DA		project no. 1036	dwg no. 002
drawing	chkd	drwn	date	revision
LEVEL 1 PLAN	TW	MA	1/2/21	Х

Attachment C: Borehole Logs

CLIENT	Sı	utherla	nd & A	ssociates Planning			COMMENCED	15/10/2021	COMPLETED	15/1	0/202	21		REF	BH301
PROJECT	De	etailed	Site In	vestigation			LOGGED	DS	CHECKED					Sheet	1 OF 1
BITE	21	1 Vince	nts Ro	ad, Kurrajong, NSW.			GEOLOGY	Ashfield Shale	VEGETATION	Gra	ss				NO. P2007700
	Г			Hydraulic			LONGITUDE		RL SURFACE	m				DATUM	AHD
XCAVATIO	N DI	IMENSI	ONS	ø100 mm x 1.70 m depti	h		LATITUDE		ASPECT					SLOPE	
	Drilli	ing		Sampling		z			Field Material D		· ·				
METHOU PENETRATION RESISTANCE	WAIER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED			OCK MATERIAL DE			MOISTURE	CONSISTENCY DENSITY		AD	ICTURE AND IDITIONAL ERVATIONS
				0.1/S/Dup03 D 0.10 m		CI	FILL: Silty CLAY; m	edium plasticity; browr	n; trace gravels.				FILL		
				0.5/S/1 D 0.50 m											
Not F	Not Encountered														
		1.2 — - - 1.4 — - 1.6 — -		1.2/S/1 D 1.20 m											
		- - 1.8 - - - -	1.70				Hole Terminated at Target depth	1.70 m							
				EXCAVATION LOG T	ОВ	E READ IN C	ONJUCTION WI	TH ACCOMPANYI	NG REPORT NO	TES /	AND	ABB	I REVIA	TIONS	
m	Pa	rt				Suite	MARTENS & . 201, 20 George \$ Phone: (02) 9476	ASSOCIATES PTY L St. Hornsby, NSW 20 9999 Fax: (02) 947 WEB: http://www.ma	LTD)77 Australia 6 8767			En	gin		g Log - OLE

									COMMENCED	15/10/2021	COMPLETED	15/	15/10/2021 REF BH302				
3									LOGGED	DS	CHECKED						
SIT	E	2	1 Vince	nts Roa	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale	VEGETATION	I Gra	ass			Sheet PROJECT	1 OF 1 NO. P2007700
EQI	JIPME	NT			Hydraulic				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXCAVATION DIMENSIONS Ø100 mm x 0.80 m depth											ASPECT					SLOPE	
			lling		Sampling	_		_			Field Material		1		1		
METHOD	PENETRATION RESISTANCE	WATER DEPTH (metres) HLdad HLdad CLASSIFICATION CLASSIFICATION						SOIL/RC							AD	CTURE AND DITIONAL ERVATIONS	
	H	Not Encountered	0.2 — - - - - - - - - - - - - - - - - - - -	0.30	0.1/S/1 D 0.10 m 0.6/S/1 D 0.60 m			CI	SHALE; pale brown strength.	edium plasticity; browr					RESIDI		
					EXCAVATION LOG TO		EREA		Hole Terminated at Refusal		NG REPORT NO	DTES	AND	ABB		INNS	Usal
(art ight Martens						e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY L St. Hornsby, NSW 20 9999 Fax: (02) 947 WEB: http://www.ma	077 Australia 6 8767			En		eerin REH	g Log - OLE

CLIEN	IT	Suth	erland &	k As	ssociates Planning				COMMENCED	15/10/2021		COMPLETED	15/	10/20	21		REF	BH303
PROJI	ECT	Deta	iled Site	Inv	estigation				LOGGED	DS		CHECKED					Sheet	1 OF 1
SITE		21 V	incents l	Roa	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale		VEGETATION	Gra	ISS				NO. P2007700
									LONGITUDE			RL SURFACE	m				DATUM	AHD
XCAV				,	ø100 mm x 1.00 m dept	h			LATITUDE			ASPECT					SLOPE	
	_	Drilling	3		Sampling			z	Field Material			eld Material D		ri –	1			
PENETRATION	RESISTANCE	DEPTH	(metres) ADEF R	PTH	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		SOIL/ROCK MATERIAL DESCRIPTION				MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
. L		0. 0. 0. 0.	4		0.1/S/1 D 0.10 m 0.5/S/1 D 0.50 m					edium plasticity; brow						FILL	UAL SOIL	
ŀ	1	1.	.01.0	00					SHALE: becoming v Hole Terminated at								HERED ROO	
		1.	-						Refusal									
		1.	8	F	EXCAVATION LOG T	TO B	E REA	DING		TH ACCOMPANY!	ING	REPORT NOT	ĒS /	AND	ABB	REVIA	TIONS	
(rtei lartens & Asso	n	s			Sui	MARTENS & . te 201, 20 George \$ Phone: (02) 9476	ASSOCIATES PTY St. Hornsby, NSW 2 9999 Fax: (02) 947 WEB: http://www.m	LTD 077 /	Australia 767				gin		g Log - OLE

CLIENT	Sutherl	and & A	ssociates Planning				COMMENCED	15/10/2021	COMPLETED	15/1	0/202	:1		REF	BH304
PROJECT	Detaile	d Site In	vestigation				LOGGED	DS	CHECKED					Sheet	1 OF 1
SITE	21 Vinc	ents Ro	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale	VEGETATION	Gra	SS				NO. P2007700
			Hydraulic				LONGITUDE		RL SURFACE	m		_		DATUM	AHD
XCAVATION	DIMENS	SIONS	Ø100 mm x 1.60 m dep	th			LATITUDE		ASPECT					SLOPE	
	rilling		Sampling	_		7			Field Material D		<u> </u>				
MELTOD PENETRATION RESISTANCE WATER	DEPTH (metres)	DEPTI- RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS	SOIL/RC	OCK MATERIAL D	ESCRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
Not Encountered	0.2- 0.4- 0.6- 0.8- 1.0- 1.2- 1.4- 1.4- 1.4-	- <u>0.15</u> - <u>0.15</u> - <u>-</u> - <u>-</u>	0.1/S/1 D 0.10 m 0.5/S/1 D 0.50 m 1.0/S/1 D 1.00 m			CI	rootlets.	sticity; brown, reddisi	, brown, orange; trace				RESID	ĴĀĒ ŠOIE	
		-													
			EXCAVATION LOG	TO BE	REA	D IN C	ONJUCTION WI	TH ACCOMPANY	ING REPORT NO	res /	AND /	ABBI	REVIAT	IONS	
	art art					Suit mail@	e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY St. Hornsby, NSW 2 9999 Fax: (02) 94 WEB: http://www.m	077 Australia 76 8767		E	Ēn	gin BO	eerin REH	g Log - OLE

CLIENT	5	Sutherla	ind & A	ssociates Planning			COMMENCED	15/10/2021	COMPLETED	15/1	10/20	21		REF	BH305	
PROJECT		Detailed	Site In	vestigation			LOGGED	DS	CHECKED					Sheet	1 OF 1	
BITE	2	1 Vince	ents Ro	ad, Kurrajong, NSW.			GEOLOGY	GEOLOGY Ashfield Shale VEGETATIO						Sneet 1 OF 1 PROJECT NO. P2007700 DATUM		
EQUIPMEN	IT			Hydraulic			LONGITUDE		RL SURFACE	E m						
EXCAVATIO			ONS	Ø100 mm x 1.70 m depth	1	1	LATITUDE	LATITUDE						SLOPE		
	Dri	lling		Sampling	z				Field Material D		ri –					
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DE	ESCRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	ICTURE AND DITIONAL ERVATIONS	
		-	0.10	-			rootlets.	Y; medium plasticity;		 es			FILL			
		0.2		0.2/S/Dup04 D 0.20 m												
	Not Encountered	0.6		0.7/S/1 D 0.70 m												
		1.0	· · · · ·	1.4/S/1 D 1.40 m												
		- - 1.6 - - -	1.70				Hole Terminated at	1.70 m								
		- 1.8 — - - -					Target depth									
				EXCAVATION LOG TO)		ONJUCTION WI			TES		ABR	REVIA ⁻	TIONS		
		art	en	S		Suit	MARTENS & / e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY I St. Hornsby, NSW 20 9999 Fax: (02) 947 WEB: http://www.ma	LTD)77 Australia 6 8767	0 /		En	gin		g Log - OLE	

CLIE	IENT Sutherland & Associates Planning C								COMMENCED	15/10/2021	COMPLETED	15/10/2021 REF BH306					
PRC	ROJECT Detailed Site Investigation TE 21 Vincents Road, Kurrajong, NSW.								LOGGED	DS	CHECKED		Shoot 1 OF 1				
SITE	Ξ	2	21 Vince	nts Roa	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale	VEGETATION	Grass					
EQU	IPME	NT			Hydraulic				LONGITUDE		RL SURFACE	m	DATUM AHD				
EXCA	AVAT		DIMENSI	SNC	Ø100 mm x 1.10 m deptł	ı			LATITUDE		ASPECT		SLOPE				
		Dri	lling		Sampling	-		z			Field Material D	MOISTURE CONDITION CONSISTENCY DENSITY					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	ICK MATERIAL DE	STRUCTURE AND ADDITIONAL OBSERVATIONS						
eris 2.00 2016-11-13		Not Encountered	0.2		0.1/S/Dup05 D 0.10 m 0.8/S/1 D 0.80 m				FILL: Silty CLAY; m	edium plasticity; brown	, grey; trace shale.	FILL	· · · · · · · · · · · · · · · · · · ·				
- DGD Lib: Martens 2 00 2016-11-13 Prj: Martens 2 00 2016-11-13				1.10					Hole Terminated at Target depth	1.10 m			- - - - - - -				
MARTERS 2001BGLB Log MARTERS BOREHOLE P2007008H601-308211019.GPJ < <creakinghile>> 19/10202111622 1002.004 DaigeLae and in Situ Tool - DGD Lb.</creakinghile>			1.2 — - - 1.4 — - - - - - - - - - - - - - - - - - - -										- - - - - - - - - - - - - - - - - - -				
MARTENS BOREHOLE P2007700BH301-308 211019.69-J <<													-				
MARTENS 2.00 LIB.GLB Log			art ight Martens	en		O BI	EREA	Suite	MARTENS & 2 201, 20 George S Phone: (02) 9476	TH ACCOMPANYIN ASSOCIATES PTY L St. Hornsby, NSW 20 9999 Fax: (02) 9476 WEB: http://www.ma	TD 77 Australia 5 8767	Engi	neering Log - OREHOLE				

CLIEN	г	Sutherla	nd & A	ssociates Planning				COMMENCED	15/10/2021	COMPLETED	15/10/2021	REF BH307
PROJE	СТ	Detailed	Site Inv	vestigation				LOGGED	DS	CHECKED		
SITE		21 Vince	ents Roa	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale	VEGETATION	Grass	
EQUIPM	IENT			Hydraulic				LONGITUDE		RL SURFACE	m	DATUM AHD
EXCAVA	ATION	I DIMENSI	ONS	Ø100 mm x 1.50 m depti	ı			LATITUDE		ASPECT		SLOPE
		rilling		Sampling	-				F	ield Material D		
METHOD PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
MARTENS 200 LIB GLg MARTENS BOREHOLE P2007700BH301:308211019GPJ <-Chawnegriles> 19/102021 16:23 1002:00.04 Daggel Lab and In Stur Tool - DOD Lib: Martens 2.00 2016-11-13	Not Encountered	0.2	1.50	0.2/S/1 D 0.20 m			CI Si gr	lty CLAY; medium avels.	plasticity; brown, yellowis	sh brown; trace sh		IDUAL SOIL
B Log M				EXCAVATION LOG T	O BI	E REA	D IN CO	NJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES AND ABBREVI	ATIONS
		art yright Martens					F	201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE st. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	Australia 767	Engii B(neering Log - OREHOLE
CLIENT	Sutherla	nd & A	ssociates Planning				COMMENCED	15/10/2021	COMPLETED	15/10/2021	REF BH308	
---	-------------------	-------------	-------------------------	-----------	-------------	-------------------------------	--	---	--------------------------	---	---	
PROJECT	Detailed	Site Inv	vestigation				LOGGED	DS	CHECKED			
SITE	21 Vince	nts Roa	ad, Kurrajong, NSW.				GEOLOGY	Ashfield Shale	VEGETATION	Grass	Sheet 1 OF 1	
EQUIPMENT			Hydraulic				LONGITUDE		RL SURFACE	m	PROJECT NO. P2007700 DATUM AHD	
EXCAVATION		ONS	Ø100 mm x 1.50 m deptł	<u>ו</u>			LATITUDE		ASPECT		SLOPE	
D	rilling		Sampling					F	ield Material D	escription		
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DES	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
MATTENS 2.00 LIB Log MATTENS BOREHOLE F2007700BH301-300 211019.GPJ <-CDrawnpFiles> 19/1022021 16:23 1002:00.04 DaugeLLab and In Sku. Tool - DGD [Lb. Martens 2.00 2016.11-13 Prj. Martens 2.00 2016.11-13	0.2	1.50	0.2/S/1 D 0.20 m				tole Terminated at arget depth				FILL	
MARTENS 2:00 LIB GLB	art o	en	s			Suite	MARTENS & 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte) / Australia 3767	Eng	gineering Log - BOREHOLE	

Attachment D: Laboratory Summary Tables

				BTEX							TRH													PAH									
		le rr es e	me/ka	an ser na se	E Cylesse (m & p)	g kylese (o)	R (viene Total	2 (6-C10 Fraction (F1)	2 56-C10 (F1 minus 2 5120)	2 C10-C16 Fraction	g Kc10-CL6 Fra ction (F2 Z mhus Naphthalene)	문 (C16-C14 Fra ction 문 / 3)	2 C31-G10 Fra ction 2 Jr.4	g K10-G10 Fra ction g Sum)	g leruolo+j+k/rluoranth g tree	R too nuph the ne	enshinkens	Anthracene	le re(a)anthrace ne	a nuda) pyrene	g Beradg hijpeykre	an se	g Kleni(s /) interacen	Incompare A	fluorene a	andemo(1,2,3. 2, dipyreme	anthone ne	be manifine ne	the second	g leruda)pyrene TEQ g calc (Huld)	Beruda)pyrese TEQ 27 (LOR)	Beruda)pyrene TEQ Efici(Zero)	PAHS (Sum of
10		0.2	0.5	1	2	1	3	25	25	50	50	100	100	50	0.2	0.1	0.1		0.1	0.05	0.1	0.1		0.1	0.1		0.1	0.1	0.1	0.5		0.5	0.05
NERSE DATE TAKE SHITTER	anagement Limits in Res / Parkland, Coarse Soil	0.4	0.7		<u>^</u>	· ·		700		1.000	~	2 500	10,000	20	01	w	0.1	U.4	0.4	0.05	0.4	0.4	0.4	0.1	w	V.4	0.1	0.4	0.4	0.0	0.3	0.7	
	s A/B Soil HSL for Vapour Intrusion. Sand	05105105105	382 232 832 562	55			401601951120		45 70 110 200		110 240 440	2,000	10,000																				
	meric Ell Urban Res & Public Open Space	aslesiesles	an 100 an an	33			401001031122	·	43 1 10 1 110 1 200		110 240 445																170						
NEPM 2013 Table 18(5) Get NEPM 2013 Table 18(5) ESL		50	85	20			105		180	120	120	800	2 800				-			0.7						-	1/0	_			-		
NEPM 2013 Table 16(0) ESL NEPM 2013 Table 1A(1) HIL			40	70			-00		-80	.20		200	4,400													-		_		3			
mermanas (able 16(1) fill	ALTER A ANI																													-	-	-	_
Field ID	Date 15/10/2021	r0.2	(0.5			1		-25	-25	-50	-50	<100	<100	r50	<0.2		(0.1	(0.1		×0.05	e0.1	<0.1		eft 1	(0.1	(0.1	<i>d</i> 0.1	(0.1	<i>d</i> 0.1	×0.5	:05	±0.5	10.05
				<1	2	4	3		-25		<50	<100		-50	<0.2	<0.1	<0.1		<0.1		40.1		<0.1	<0.1									
	15/10/2021	<0.2	-0.5	<1	2	4	3	425	- 25	<50	<50		<100	-50	<0.2	<0.1	(0.1	<0.1	<0.1 (0.1	<0.05	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	+0.1	40.1	<0.5	<0.5	<0.5 <0.5	<0.05
	15/10/2021	<0.2	40.5	<1	2	- 4	3	425	<25	<50	<50	<100	<100	450	<0.2	<0.1	<0.1	(0.1	40.1	<0.05	40.1	<0.1	<0.1	<0.1	40.1	(0.1	40.1	(0.1	40.1	<0.5	40.5	40.5	<0.05
	15/10/2021	<0.2		-41	2	4	4	- 25	-25	-50	<50	<100	<100	-50	<0.2	<0.1	-0.1	-0.1	-0.1	<0.05	-0.1	<0.1	<0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	<0.5	-05	-05	<0.05
	15/10/2021	<0.2	-0.5	4	2	4	4		-25	-50	<50	<100	<100	-50	<0.2	<0.1	-0.1	-0.1	-0.1	<0.05	-0.1	<0.1	<0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	<0.5		-05	<0.05
	15/10/2021	<0.2	-0.5		2	4	4	-25																							<0.5		
	15/10/2021	<0.2	-0.5	4	2	-1	4	-25	-25	<50	<50	<100	<100	<50	<0.2	<0.1	<0.1	<0.1	+0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
BH308/0.2	15/10/2021	<0.2	<0.5	<1	- 2	<1	4	-25	<25	<50	<50	<100	<100	<50	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.5	<0.5	-0.5	<0.05
Statistics																																	
Number of Results		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Number of Detects		0	0	0	0	0	0	•	0	٥	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration		<0.2	10.5	-1	2	4	4	-25	45	<50	<50	<100	<100	-50	<0.2	<0.1	<0.1	<0.1	<0.1	10.05	4.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.5	40.5	10.5	<0.05
Minimum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration		<0.2	10.5	<1	2	-1	4	-25	-25	<50	<50	<100	<100	<50	<0.2	<0.1	<0.1	<0.1	-10.1	<0.05	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.5	-0.5	<0.5	<0.05
Maximum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration *		0.1	0.25	0.5	1	0.5	1.5	12	12	25	25	50	50	25	0.1	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.25	0.25	0.25	0.025
Median Concentration *		0.1	0.25	0.5	1	0.5	1.5	12.5	12.5	25	25	50	50	25	0.1	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.25	0.25	0.25	0.025
Standard Deviation *		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *		0.1	0.25	0.5	1	0.5	1.5	12.5	12.5	25	25	50	50	25	0.1	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.25	0.25	0.25	0.025
% of Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Environmental Standards NEPM, NEPM 2013 Table 10(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 14(3) Res A/B Soil HSL for Vapoue Intrusion, Sand 2013, NEPM 2013 Table 14(6) ESLs for Urban Res, Coarse Soil 2013, NEPM 2013 Table 14(1) HILS Res A Soil

P2007700

																				ine Pesticides															phorous Pest					5
	-	1	1	1		1			1		1	1	1	1	1	1	1	1	Crganouru .	in Press, Mars				1	1	T	1	1		1	1	- 1		O THOMAS	pilotost PEL		1			
	Arso ric	Cidmium	(II+II)		Copper	R	Mer ar y	Michel	zhe	44.000	a 8HC	u sta	P 84C	Of ordan e (d s)	Of ordan e (trans)	9.000	8	BOT	001100400	Diełdrin	Endos uf fan 1	Endos of fan 11	age spin as fay age	Endin	Endrin al debyd e	(indone)	Heptach or	Heptac Mor eg oxíde	Met hosych lar	Aringhos methyl	Br arraphos-edhyl	Of other flot	Of appy lias-methyl	Diat In on	DKMarvos	Directh cabe	Ethan	Feel toot his n	Multition	borned
	me/ke		mr/k						ma/ka															meAu		me/kg													me/kg a	
EQL	4	0.4	1		1	1	0.1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 18(7) Management Limits in Res / Parkland, Coarse Soll	_																																							
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand	_		_																																					
NEPM 2013 Table 18(5) Generic ELL - Urban Res & Public Open Space	100																	180																						
NEPM 2013 Table 18(5) ESLs for Urban Res, Coarse Soll																																								
NEPM 2013 Table 1A(1) Hills Res A Soll	100	20		6.1	.000	200	40	400	7.400										240					10			6		300			160								
Field ID Date	6	(0.4		1.	17		<i>c</i> 01		44	(0.1	(01	(0.1	(0.1	-01	(0.1	(0.1	(0.1	1	<i>d</i> 11	<i>(</i> 01	<i>(</i> 01	<i>d</i> 0.1	40.1	(01	(0.1	(0.1	40.1	(0.1	(0.1	(0.1	<i>d</i> 11	<i>d</i> 11	<i>c</i> 01	(01)	<i>(</i> 01	40.1	<i>d</i> 0.1	(0.1		
8H301/0.1 15/10/2021	6					13	-01		44	<01			<0.1				<0.1		40.1				40.1			<0.1		<0.1	<0.1		40.1		-01			40.1			-01	40.1
BH302/0.1 15/10/2021	5					17	-01		49										40.1					-01		<0.1		<0.1	<0.1											40.1
BH303/0.1 15/10/2021 BH304/0.1 15/10/2021	d	<0.4		-		16	-01	7		<0.1		<0.1					<0.1		40.1				40.1		<0.1 (0.1		41	<0.1	<0.1	<0.1	49.1		<0.1	-01		40.1				40.1
8H304/0.1 15/10/2021 8H305/0.2 15/10/2021	7	<0.4 c0.4			18	18	d0.1	12		(0.1		(0.1				<0.1 c0.1			49.1	<0.1 c0.1	d0.1		40.1		(0.1		40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	01						40.1
BH105/0.2 15/10/2021 BH105/0.1 15/10/2021	7	<0.4 c0.4				13	d0.1	9		(0.1		(0.1	(0.1		(0.1				c0.1	<0.1 c0.1		40.1			(0.1		40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	49.1			40.1			40.1
8H105/0.1 15/10/2021	7	<0.4 c0.4				17	d0.1	9	52	(0.1		(0.1	(0.1		(0.1				c0.1	<0.1 c0.1	d0.1	40.1			(0.1		40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	49.1			40.1			40.1
8H108/0.2 15/10/2021	6	<0.4 c0.4			16	44	d0.1	6		(0.1	<0.1 c0.1	(0.1	(0.1	40.1	(0.1	<0.1 c0.1		49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1	<0.1 (0.1	(0.1	(0.1	40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	49.1	d0.1		40.1	(0.1		40.1
0501 15/10/2021	6	<0.4 c0.4			16	15	d0.1	9	42	(0.1	<0.1 c0.1	(0.1	(0.1	40.1	(0.1			49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1	<0.1 (0.1	(0.1	(0.1	40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	49.1	40.1		40.1	(0.1		40.1
0501 15/10/2021		<0.4 c0.4			10	3	d0.1		26	<0.1		(0.1	(0.1	40.1	(0.1	<0.1 c0.1	<0.1 c0.1	49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1	<0.1 (0.1	(0.1	(0.1	40.1	<0.1 c0.1	(0.1	<0.1	40.1	49.1	d0.1	01	d0.1		40.1	(0.1		40.1
SSI4 15/10/2021		<0.4			18	16	d0.1		40	<0.1	<0.1 c0.1	(0.1	(0.1	40.1	(0.1		<0.1 c0.1	49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1	<0.1 (0.1	(0.1	(0.1	40.1	<0.1 c0.1	(0.1	<0.1	40.1	49.1	d0.1	01	d0.1		40.1	(0.1		40.1
SSB5 15/10/2021		<0.4			10	18	d0.1		41	(0.1	<0.1 c0.1	(0.1	(0.1	40.1	(0.1	<0.1 c0.1	<0.1 c0.1	49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1	-01	(0.1	(0.1	40.1	<0.1 c0.1	(0.1	<0.1	40.1	49.1	d0.1	01	d0.1		40.1	(0.1		40.1
SSIS 15/10/2021 SSI6 15/10/2021	7	<0.4			20	18	d0.1	0	20	<0.1	<0.1 c0.1	(0.1	(0.1		<0.1			40.1		<0.1 c0.1	d0.1	40.1			<0.1	(0.1	40.1	<0.1 c0.1	(0.1	<0.1	40.1	49.1	d0.1	01	d0.1		40.1	(0.1		40.1
SSIF 15/10/2021 SSI7 15/10/2021	4	<0.4 c0.4			41	15	d0.1	9	41	(0.1		(0.1	(0.1		(0.1			49.1	c0.1	<0.1 c0.1	d0.1	40.1	40.1		(0.1	(0.1	40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	01	d0.1		40.1	(0.1		40.1
5537 15/10/2021 5538 15/10/2021	64					15	d0.1			(0.1		(0.1	(0.1		(0.1				c0.1	<0.1 c0.1		40.1			(0.1		40.1	<0.1 c0.1	(0.1	(0.1	40.1	49.1	d0.1	01			40.1			40.1
	7					12	d0.1	10		(0.1		(0.1	(0.1		(0.1				40.1	<0.1 c0.1			40.1		(0.1		40.1	<0.1 c0.1	(0.1	<0.1	40.1			01						40.1
5539 15/10/2021	6					17	49.1		41			<0.1					<0.1		49.1				40.1			<0.1		<0.1	<0.1	<0.1			49.1			40.1				40.1
5560 15/10/2021 5541 15/10/2021	6			-		10	d0.1		44				(0.1				<0.1 c0.1		c0.1			40.1				(0.1		<0.1 c0.1	(0.1		40.1		d0.1			d0.1				40.1
591 15/16/121		<0.4	1 11	_	14	10	80.1		29	- 40.1	- 40.1	- 40.1	- 40.1	40.1	×0.1	80.1	80.1	- 92.1	- 92.1	40.1	40.1	40.1	40.1	40.1	20.1	20.1	40.1	40.1	40.1	40.1	42.1	40.1	80.1	69.1	80.1	40.1	40.1	201	201	40.1
Statistics																																								
Number of Basults	10	10	10		16	10	18	16	18	18	10	10	10	14	14	10	10	10	10	10	18	18	18	16	10	10	18	14	10	10	10	10	10	16	16	10	18	10	10	10
Number of Detects	13	0	10		16	10	0	16	18	0	0	0	0			0			0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	(4	c0.4	4	_	1	5	(1)	5	20	(0.1	(01	(0.1	(0.1	(0.1	(0.1	(0.1	(0.1	(0.1	c0.1	(0.1	(1)	(0.1	(01	(0.1	(0.1	(01	(0.1	(0.1	(0.1	(0.1	d 1	(01)	(1)	(1)	c0.1	(01)	01	(01	(01	(0.1
Minimum Detect		ND	4		1	-	ND		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration		<0.4	17		43	11	(B)	18	97	<0.1		(0.1	(0.1	(0.1	(0.1	(0.1	<0.1	-12.1	c0.1	(R) 1	c0.1	d0.1	-9.1		<0.1	(0.1	(0.1	(0.1	(0.1	<0.1	49.1	(21	(B)	c0.1	ch1	(0.1	(0.1	(0.1	(0.1	40.1
Maximum Detect				-	43	11	ND	16	97	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND
Average Concentration *	5.4	0.2	11		20	17	0.05	9.1	44	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Median Concentration *	6	0.2	10	1	1.5	15.5	0.05	1.5	41	0.05	0.05	0.05	0.05	0.05	0.05			0.05	0.05	0.05	0.05	0.05		0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05
Standard Deviation *	2.3	0	15		7.7	6.4	0	1	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0
95% UCL (Student's-t) *	6.344	0.2	11.9	6 23	3.06	19.25	0.05	10.34	51.45	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
N of Detects	72	0				100	0	100	100	0		0	0	0	0				0	0	0	0			0		0	0	0	0	0	0	0	0	0		0			0
S of Non-Detects							100	0		100		100	100	100	100	100			100	100	100	100	100			100	100	100	100				100	100	100			100	100	
* A Non Detect Multiplier of 0.5 has been applied.																																								

Environmental Standards NRPM, NRPM 2013 Table 18(7) Management Limits in Res / Parkland, Coarse Soll 2013, NRPM 2013 Table 18(3) Res Alt Soll HSL for Vapour Intrusion, Sand 2013, NRPM 2013 Table 18(6) ESLs for Urban Res, Coarse Soll 2013 NRPM 2013 Table 18(1)HII Is the A Coll 2013 NRPM 2013 Table 18(1)HII Is the A Coll

	oclates Pty Ltd																																										
						Metals														Orestechio	ine Pesticides														0	innechou	uphorous Per	aticides					Pesticide
		ne rić	drium	10 miun ()1+4)	2005		1	ler our y	ideel	26	4000	aic	444	ac	Yordsn e (d s)	Yordan e (trans)	anc anc	8	10	0000000	etdin	obscultur i	II wyprope	udos ul fan su lyh ate	skin	skin si dehyd e	(Initiation)	episch or	eptacht or ept oxide	let howych lor	Anoph os me thyl	Arraption esting	if or par lifes	Vapy Bos-methyl	wia	5	khavas	irreth aute	Man	ni frot his n	no Math	peare	nation
		< nu/kr		o me/ke	me/k	kr mel	har e	2 mt/kt	z mr/kr	R me/ke	ne/ke		≺ me/ke				ne/ke					me/ke					in me/ke		x me/ke	2	ma/ka	e me/ka	me/ke								2 me/ke		
EQL		4	0.4	1	1	1	_	0.1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0	2.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	18(5) Generic EIL - Urban Res & Public Open Space	23																	60																								
NEPM 2013 Table 1	1A(1) HILL Res A Sol	22	7		200	0 10	0	13	123	2467										80					3			2		100			51										
Field ID																																											
		-																													-												
C01	15/10/2021	5	<0.4		15	2		<0.1	4	15	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	-0.1	40.1	-0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	-0.1	-0.1	<0.1	<0.1			4.1	4.1	<0.1	<0.1	<0.1	-0.1	<0.1
C02	15/10/2021	5	<2.4	12	18		2	<0.1	4	15 69	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1 -0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	. 0	9.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
C02 C03	15/10/2021 15/10/2021	5 8 7	<0.4 <0.4	12	18 27 18	2	5	<0.1 <0.1	4 12 7	15 69 34	<0.1	<0.1 <0.1		40.1 40.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	40.1 40.1	<0.1 <0.1 <0.1		<0.1 <0.1	<0.1 <0.1	<0.1 ⊲0.1	<0.1 <0.1	<0.1 <0.1	<0.1		40.1 40.1	-0.1 -0.1	-0.1 -0.1	40.1	-d0.1 -d0.1	<01 <01	<0.1 <0.1	8 9	0.1 0.1	40.1	40.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	40.1 40.1	<0.1 <0.1
C02 C03 C04	15/10/2021 15/10/2021 15/10/2021	5 8 7 6	-0.4 <0.4 <0.4	12	18 27 18 17	2 2 2	9 5 5	<0.1 <0.1 <0.1	4 12 7	15 69 34 31	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	40.1 40.1	40.1 40.1 40.1	<0.1 <0.1 <0.1	d1 d0.1 d0.1	d0.1 d0.1 d0.1		<0.1		d1 d1 d1	4.1 4.1 4.1	 d.1 d.1 d.1 	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	40.1 40.1 40.1	40.1 40.1 40.1	<pre><0.1 <0.1 <0.1</pre>	<pre><0.1 <0.1 <0.1</pre>	40.1 40.1 40.1	d0.1 d0.1 d0.1	<pre><01 <01 <01 <01</pre>	<pre>d0.1 d0.1 d0.1</pre>	000	0.1 0.1 0.1	40.1 40.1 40.1	40.1 40.1 40.1	40.1 40.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	40.1 40.1 40.1	-0.1 -0.1 -0.1
C01 C02 C03 C04 C05	15/10/2021 15/10/2021 15/10/2021 15/10/2021	5 8 7 6 7	0.4 0.4 0.4 0.4	12	18 27 18 17 22	2	9 5 5 7	<01 <01 <01 <01	4 12 7 8 10	15 69 34 31 52	<0.1	<0.1 <0.1	<0.1	40.1 40.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1	<pre><pre></pre><pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre></pre>	40.1 40.1			<0.1 <0.1	40.1 40.1 40.1 40.1	40.1 40.1 40.1 40.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1	<0.1	<0.1	40.1 40.1 40.1 40.1	40.1 40.1 40.1 40.1	40.1 40.1 40.1 40.1	0.1 0.1 0.1	-d0.1 -d0.1	<01 <01	<0.1 <0.1	000	0.1 0.1	40.1 40.1 40.1 40.1	40.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	d.1 d.1 d.1 d.1	<pre> 40.1</pre>
C02 C03 C04 C05 C06	15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021	5 8 7 6 7 7 7	- 44 - 44 - 44 - 44 - 44 - 44	12	18 27 18 17 22 22	22	5 5 7	<pre><01 <01 <01 <01 <01 <01 <01</pre>	4 12 7 8 10 10	15 69 34 31 52 52	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	40.1 40.1	40.1 40.1 40.1 40.1 40.1	40.1 40.1 40.1 40.1 40.1	d1 d0.1 d0.1	40.1 40.1 40.1 40.1 40.1		<0.1		d1 d1 d1	0.1 0.1 0.1 0.1 0.1	40.1 40.1 40.1 40.1 40.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	40.1 40.1 40.1 40.1 40.1	40.1 40.1 40.1	40.1 40.1 40.1 40.1 40.1	<pre></pre>	<pre></pre>	40.1 40.1 40.1 40.1	d0.1 d0.1 d0.1	<pre><01 <01 <01 <01</pre>	<pre>d0.1 d0.1 d0.1</pre>	000	0.1 0.1 0.1	40.1 40.1 40.1 40.1 40.1	41 41 41 41 41	<pre>c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1</pre>	<pre> c0.1</pre>	<pre>c0.1 c0.1 c0.1 c0.1 c0.1 c0.1</pre>	40.1 40.1 40.1 40.1 40.1	ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା
C02 C03 C04 C05 C05 C05 C05	15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021	5 8 7 6 7 7 8	0.4 0.4 0.4 0.4 0.4 0.4 0.4	12 13 14 11 10 10	18 27 18 17 22 22 22 24		5 5 7 5	d1 d1 d1 d1 d1 d1 d1 d1 d1 d1	4 12 7 8 10 10 10	15 69 34 31 52 52 49	0.1 0.1 0.1 0.1 0.1 0.1	<pre> -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 </pre>	6.1 6.1 6.1 6.1 6.1 6.1	d.1 d.1 d.1 d.1 d.1 d.1 d.1	<pre> d1</pre>	41 41 41 41 41 41 41	40.1 40.1 40.1 40.1 40.1 40.1	41 41 41 41 41 41 41	40.1 40.1 40.1 40.1	d1 d1 d1 d1 d1 d1 d1 d1	01 01 01 01 01 01 01	01 01 01 01 01 01 01	4.1 4.1 4.1 4.1 4.1 4.1	01 01 01 01 01 01 01	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	40.1 40.1 40.1 40.1 40.1 40.1	0.1 0.1 0.1 0.1 0.1 0.1	d).1 d).1 d).1 d).1 d).1 d).1	<pre>d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1</pre>	<pre>d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1</pre>	01 01 01 01 01 01 01	01 01 01 01 01 01 01	401 401 401 401 401 401	01 01 01 01 01 01 01	0000	0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01	01 01 01 01 01 01 01	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	<pre> d0.1</pre>	<pre> d0.1</pre>	6.1 6.1 6.1 6.1 6.1 6.1	40.1 40.1 40.1 40.1 40.1 40.1
C02 C03 C04 C05 C05 C05 C05 C07 C06	15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021	5 7 7 7 8 6	- 44 - 44 - 44 - 44 - 44 - 44	12 13 14 11 10 10	18 27 18 17 22 22 22 24 24 20	22	5 5 7 5	<pre><01 <01 <01 <01 <01 <01 <01</pre>	4 12 7 8 10 10 10 7	15 69 34 31 52 52 49 53	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	40.1 40.1	40.1 40.1 40.1 40.1 40.1	40.1 40.1 40.1 40.1 40.1	d1 d0.1 d0.1	40.1 40.1 40.1 40.1 40.1	41 41 41 41 41 41 41	<0.1		d1 d1 d1	0.1 0.1 0.1 0.1 0.1	4.1 4.1 4.1 4.1 4.1 4.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	40.1 40.1 40.1 40.1 40.1	40.1 40.1 40.1	40.1 40.1 40.1 40.1 40.1	<pre></pre>	<pre></pre>	40.1 40.1 40.1 40.1	01 01 01 01 01 01 01	<pre><01 <01 <01 <01</pre>	01 01 01 01 01 01 01	0000	0.1 0.1 0.1 0.1 0.1 0.1	40.1 40.1 40.1 40.1 40.1	41 41 41 41 41	<pre>c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1</pre>	<pre> d0.1</pre>	<pre>c0.1 c0.1 c0.1 c0.1 c0.1 c0.1</pre>	6.1 6.1 6.1 6.1 6.1 6.1	ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା ଟ୍ୟା
C01 C03 C04 C05 C05 C05 C05 C05 C05 C05 C05	15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021 15/10/2021	8 7 6 7 7 8 6	0.4 0.4 0.4 0.4 0.4 0.4 0.4	12 13 14 10 10 8	18 27 18 17 22 22 24 24 20 16	22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	2 5 7 5 5 5 5	d1 d1 d1 d1 d1 d1 d1 d1 d1 d1	4 12 7 8 10 10 10 7 7 7	15 69 34 31 52 52 49 51 31	0.1 0.1 0.1 0.1 0.1 0.1	<pre> -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 </pre>	6.1 6.1 6.1 6.1 6.1 6.1	d.1 d.1 d.1 d.1 d.1 d.1 d.1	<pre> d1</pre>	41 41 41 41 41 41 41	41 41 41 41 41 41 41 41 41	41 41 41 41 41 41 41	40.1 40.1 40.1 40.1	d1 d1 d1 d1 d1 d1 d1 d1	01 01 01 01 01 01 01	01 01 01 01 01 01 01	40.1 40.1 40.1 40.1 40.1 40.1 40.1	01 01 01 01 01 01 01	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	40.1 40.1 40.1 40.1 40.1 40.1	0.1 0.1 0.1 0.1 0.1 0.1	d).1 d).1 d).1 d).1 d).1 d).1	<pre>d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1</pre>	<pre>d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1 d0.1</pre>	01 01 01 01 01 01 01 01	01 01 01 01 01 01 01	401 401 401 401 401 401	41 401 401 401 401 401 401 401	00000	0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01	01 01 01 01 01 01 01	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	<pre> c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 </pre>	<pre> d0.1</pre>	6.1 6.1 6.1 6.1 6.1 6.1	40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1
C02 C02 C04 C05 C05 C05 C07 C06 C07 C06 C09 C00 C09 C00	15/02/201 15/02/201 15/02/201 15/02/201 15/02/201 15/02/201 15/02/201 15/02/201 15/02/201 15/02/201	8 7 6 7 7 8 6	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	12 13 14 10 10 8 10	18 27 18 17 22 22 24 20 16 14	24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	2 5 7 5 5 5 1 5	<pre>dl1 dl1 dl1 dl1 dl1 dl1 dl1 dl1 dl1 dl1</pre>	4 12 7 8 10 10 10 7 7 7	15 69 34 31 52 52 49 53 31 31 24	(0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1) (0.1)	<pre> 40.1</pre>	41 41 41 41 41 41 41 41	4.1 4.1 4.1 4.1 4.1 4.1 4.1	40.1 40.1 40.1 40.1 40.1 40.1 40.1	01 01 01 01 01 01 01 01	41 41 41 41 41 41 41 41 41	40.1 40.1 40.1 40.1 40.1 40.1 40.1	01 01 01 01 01	d1 d1 d1 d1 d1 d1 d1 d1 d1	ୟା ୟା ୟା ୟା ୟା ୟା ସା ସା ସା ସା ସା ସା ସା ସା ସା ସା ସା ସା ସା	41 41 41 41 41 41 41 41	40.1 40.1 40.1 40.1 40.1 40.1 40.1	01 01 01 01 01 01 01 01	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>		41 41 41 41 41 41 41	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<pre> d0.1</pre>	<pre> d0.1</pre>	01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01	<pre> 401 401 401 401 401 401 401 401</pre>	41 401 401 401 401 401 401 401 401	8 8 8 8 8 8 8	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01		<pre> 40.1</pre>	<pre> c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 </pre>	<pre> c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 </pre>	4.1 4.1 4.1 4.1 4.1 4.1 4.1	<pre> 40.1</pre>
C01 C03 C04 C05 C05 C05 C07 C08 C09 C09 C11	14/10/2011 15/10/2011 16/10/2011 14/10/2011 15/10/2011 15/10/2011 15/10/2011	8 7 6 7 7 8 6	04 04 04 04 04 04 04 04 04	12 13 14 10 10 8 10 10 10	18 27 18 17 22 22 24 26 16 14		5 5 5 5 5 5 5 5 7 7	01 01 01 01 01 01 01 01 01	4 12 7 8 10 10 7 7 7 8	15 69 34 31 52 52 49 51 31 24 40	<pre></pre>	<pre></pre>	01 01 01 01 01 01 01 01 01 01	4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	 40.1 40.1 40.1 40.1 40.1 40.1 40.1 	01 01 01 01 01 01 01 01 01 01 01 01	41 41 41 41 41 41 41 41 41 41	01 01 01 01 01 01 01 01 01 01	0.1 0.1 0.1 0.1 0.1 0.1	401 401 401 401 401 401 401 401 401	କା କା କା କା କା କା କା କା କା କା କା କା କା କ	41 41 41 41 41 41 41 41 41 41	40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	01 01 01 01 01 01 01 01 01 01 01 01	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>		41 41 41 41 41 41 41 41 41	40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	<pre> d0.1</pre>	<pre> d0.1</pre>	01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01	<pre> 401 401 401 401 401 401 401 401</pre>	41 41 41 41 41 41 41 41 41 41 41 41		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01	81 81 81 81 81 81 81 81 81 81 81 81 81 8	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<pre> (0.1</pre>	<pre> (0.1</pre>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01
C01 C03 C04 C04 C06 C06 C07 C06 C07 C08 C09 C10 C10 C11	11/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031	8 7 6 7 7 8 6	04 04 04 04 04 04 04 04 04 04	12 13 14 10 10 8 10 10 10	18 27 18 17 22 22 24 20 16 14 16		5 5 5 5 5 5 5 5 7 7	01 01 01 01 01 01 01 01 01 01 01	4 12 7 8 10 10 10 7 7 8 8	15 69 34 31 52 52 49 51 31 24 40	<pre>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</pre>	 (0.1) 	01 01 01 01 01 01 01 01 01 01 01	d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1	(0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	41 41 41 41 41 41 41 41 41 41 41 41	(0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1) (0.1)	01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01		କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କ	01 01 01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	41 41 41 41 41 41 41 41 41 41 41	41 41 41 41 41 41 41 41 41 41 41 41 41 4	41 41 41 41 41 41 41 41 41 41 41 41 41 4	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01	41 41 41 41 41 41 41 41 41 41 41 41		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			01 01 01 01 01 01 01 01 01 01 01 01	(0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1)	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1)	d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1	01 01 01 01 01 01 01 01 01 01 01 01
C01 C03 C04 C05 C06 C07 C06 C07 C06 C09 C09 C10 C11 Striitio	11/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031 15/10/2031	8 7 6 7 7 8 6	04 04 04 04 04 04 04 04 04 04	12 13 14 10 10 8 10 10 10	18 27 18 17 22 24 24 20 16 14 16		5 5 5 5 5 5 5 5 7 7	01 01 01 01 01 01 01 01 01 01 01	4 12 7 8 10 10 10 7 7 8 8	15 69 34 51 52 69 51 51 21 24 40	<pre>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</pre>	 (0.1) 	01 01 01 01 01 01 01 01 01 01 01	d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1	(0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	41 41 41 41 41 41 41 41 41 41 41 41	(0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1) (0.1)	01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01		କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କ	01 01 01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	41 41 41 41 41 41 41 41 41 41 41	41 41 41 41 41 41 41 41 41 41 41 41 41 4	41 41 41 41 41 41 41 41 41 41 41 41 41 4	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01	41 41 41 41 41 41 41 41 41 41 41 41		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			01 01 01 01 01 01 01 01 01 01 01 01	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1)	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1)	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01
C01 C02 C03 C04 C05 C05 C05 C07 C06 C07 C06 C09 C10 C10 C10 C10 C11 Statistics Number of Results	11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021 11/1/22021	8 7 6 7 7 8 6	04 04 04 04 04 04 04 04 04 04 04 04	12 13 14 10 10 8 10 10 10	18 27 18 17 22 24 20 16 14 16		5 5 7 6 5 1 5 7	01 01 01 01 01 01 01 01 01 01 01	4 12 7 8 10 10 10 7 7 8 8 8	15 69 34 52 52 53 31 24 40 40 11	<pre>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</pre>	 (0.1) 	01 01 01 01 01 01 01 01 01 01 01	d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1 d.1	(0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	41 41 41 41 41 41 41 41 41 41 41 41	(0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1) (0.1)	01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01		କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କ	01 01 01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	41 41 41 41 41 41 41 41 41 41 41	41 41 41 41 41 41 41 41 41 41 41 41 41 4	41 41 41 41 41 41 41 41 41 41 41 41 41 4	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01	41 41 41 41 41 41 41 41 41 41 41 41		01 01 01 01 01 01 01 01 01 01			01 01 01 01 01 01 01 01 01 01 01 01	(0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1)	(0.1 (0.1 (0.1 (0.1 (0.1) (0.1) (0.1) (0.1)	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01

Environmental Standards 2013, NEPM 2013 Table 1A(1) HILs Res A Sol

Attachment E: Data Validation Report

Sample Handling

Lab Report	Sample Chain of Custody (COC) Procedures	Sample Preservation	Sample Receipt Notification Matches COC	Samples Analysed Within Holding Time
280517 - S	Pass	Pass	Pass	Pass

Soil samples were delivered in chilled cooler boxes within holding times, with accompanying COC.

Precision / Accuracy

Lab Report	Analysed by NATA Laboratory	Trip Spike and Blank Used	Adequate Duplicates Analysed	Field Rinsate Analysed
280517 - S	Pass	Pass	Pass	NA

Soil trip spikes and blanks reported within the acceptable recovery range.

Soil trip blanks reported less that LOR for volatile analysis.

Duplicates/ laboratory QA / QC

Lab Report	Field RPD	Laboratory Surrogate Recovery	Laboratory Duplicate RPD	Lab Blank and Matrix Spike Recovery	Laboratory Control Sample
280517 - S	Pass	Pass	Pass	Pass	Pass

RPD control limits reported were acceptable apart from copper, nickel and zinc in BH305/0.2 and Dup04, which is likely attributed to the heterogeneous nature of fill. As the values are significantly less than the SAC, all data is usable for this report.

Attachment F: Laboratory Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280517

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Ben McGiffin
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2007700: 21 Vincents Road, Kurrajong, NSW
Number of Samples	82 Soil
Date samples received	15/10/2021
Date completed instructions received	15/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 22/10/2021

 Date of Issue
 22/10/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Thomas Lovatt, Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	125	127	106	104	109
vTRH(C6-C10)/BTEXN in Soil						
		280517-15	280517-17	280517-19	280517-69	280517-70
vTRH(C6-C10)/BTEXN in Soil	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS	280517-15	280517-17	280517-19	280517-69	280517-70
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	280517-15 BH306/0.1	280517-17 BH307/0.2	280517-19 BH308/0.2	280517-69 Trip Spike	280517-70 Trip Blank
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled	UNITS	280517-15 BH306/0.1 15/10/2021	280517-17 BH307/0.2 15/10/2021	280517-19 BH308/0.2 15/10/2021	280517-69 Trip Spike 15/10/2021	280517-70 Trip Blank 15/10/2021
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample	UNITS	280517-15 BH306/0.1 15/10/2021 Soil	280517-17 BH307/0.2 15/10/2021 Soil	280517-19 BH308/0.2 15/10/2021 Soil	280517-69 Trip Spike 15/10/2021 Soil	280517-70 Trip Blank 15/10/2021 Soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Composite Reference	UNITS - -	280517-15 BH306/0.1 15/10/2021 Soil	280517-17 BH307/0.2 15/10/2021 Soil	280517-19 BH308/0.2 15/10/2021 Soil	280517-69 Trip Spike 15/10/2021 Soil	280517-70 Trip Blank 15/10/2021 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Composite Reference Date extracted	UNITS - - mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Composite Reference Date extracted Date analysed	-	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Composite Reference Date extracted Date analysed TRH C6 - C9	- - mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA]	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] 108%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Composite Reference Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA]	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)Benzene	- - mg/kg mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] 108%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] 108% 92%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] [NA] 108% 92% 101%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] 108% 92% 101% 98%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleComposite ReferenceDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280517-15 BH306/0.1 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	280517-17 BH307/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	280517-19 BH308/0.2 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	280517-69 Trip Spike 15/10/2021 Soil 20/10/2021 21/10/2021 [NA] [NA] [NA] [NA] 108% 92% 101% 98% 100%	280517-70 Trip Blank 15/10/2021 Soil 20/10/2021 21/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1

svTRH (C10-C40) in Soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	84	83	88	85

svTRH (C10-C40) in Soil				
Our Reference		280517-15	280517-17	280517-19
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil
Composite Reference				
Date extracted	-	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	83	84	82

PAHs in Soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	118	122	122	127	110

PAHs in Soil				
Our Reference		280517-15	280517-17	280517-19
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil
Composite Reference				
Date extracted	-	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	113	117	125

Organochlorine Pesticides in soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	92	98	104	103

Organochlorine Pesticides in soil						
Our Reference		280517-15	280517-17	280517-19	280517-54	280517-55
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2	SS34	SS35
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		•				
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	103	98	91	100

Organochlorine Pesticides in soil						
Our Reference		280517-56	280517-57	280517-58	280517-59	280517-60
Your Reference	UNITS	SS36	SS37	SS38	SS39	SS40
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	103	97	94	100

Organochlorine Pesticides in soil						
Our Reference		280517-61	280517-62	280517-63	280517-66	280517-67
Your Reference	UNITS	SS41	DS01	DS02	DUP03	DUP04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	94	117	96	94

Organochlorine Pesticides in soil						
Our Reference		280517-68	280517-72	280517-73	280517-74	280517-75
Your Reference	UNITS	DUP05	C01	C02	C03	C04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference			21,22,23	24,25,26	27,28,29	30,31,32
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	102	105	97	103

Organochlorine Pesticides in soil						
Our Reference		280517-76	280517-77	280517-78	280517-79	280517-80
Your Reference	UNITS	C05	C06	C07	C08	C09
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		33,34,35	36,37,38	39,40,41	42,43,44	45,46,47
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	91	101	104	106

Organochlorine Pesticides in soil			
Our Reference		280517-81	280517-82
Your Reference	UNITS	C10	C11
Date Sampled		15/10/2021	15/10/2021
Type of sample		Soil	Soil
Composite Reference		48,49,50	51,52,53
Date extracted	-	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	94	98

Organophosphorus Pesticides in Soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	92	98	104	103

Organophosphorus Pesticides in Soil						
Our Reference		280517-15	280517-17	280517-19	280517-54	280517-55
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2	SS34	SS35
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	103	98	91	100

Organophosphorus Pesticides in Soil					_	
Our Reference		280517-56	280517-57	280517-58	280517-59	280517-60
Your Reference	UNITS	SS36	SS37	SS38	SS39	SS40
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	103	97	94	100

Organophosphorus Pesticides in Soil						
Our Reference		280517-61	280517-62	280517-63	280517-66	280517-67
Your Reference	UNITS	SS41	DS01	DS02	DUP03	DUP04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	94	117	96	94

Organophosphorus Pesticides in Soil						
Our Reference		280517-68	280517-72	280517-73	280517-74	280517-75
Your Reference	UNITS	DUP05	C01	C02	C03	C04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference			21,22,23	24,25,26	27,28,29	30,31,32
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	102	105	97	103

Organophosphorus Pesticides in Soil						
Our Reference		280517-76	280517-77	280517-78	280517-79	280517-80
Your Reference	UNITS	C05	C06	C07	C08	C09
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		33,34,35	36,37,38	39,40,41	42,43,44	45,46,47
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	91	101	104	106

Organophosphorus Pesticides in Soil			
Our Reference		280517-81	280517-82
Your Reference	UNITS	C10	C11
Date Sampled		15/10/2021	15/10/2021
Type of sample		Soil	Soil
Composite Reference		48,49,50	51,52,53
Date extracted	-	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	94	98

PCBs in Soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date extracted	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	92	98	104	103

PCBs in Soil				
Our Reference		280517-15	280517-17	280517-19
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil
Composite Reference				
Date extracted	-	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	103	98

Acid Extractable metals in soil						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	6	5	<4	8	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	16	11	12	14
Copper	mg/kg	17	28	22	18	19
Lead	mg/kg	13	17	16	18	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	13	7	12	8
Zinc	mg/kg	44	49	33	58	25

Acid Extractable metals in soil						
Our Reference		280517-15	280517-17	280517-19	280517-54	280517-55
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2	SS34	SS35
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	7	7	6	8	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	10	12	7	17
Copper	mg/kg	26	25	16	21	10
Lead	mg/kg	17	33	15	13	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	6	9	8	6
Zinc	mg/kg	52	33	42	41	20

Acid Extractable metals in soil						
Our Reference		280517-56	280517-57	280517-58	280517-59	280517-60
Your Reference	UNITS	SS36	SS37	SS38	SS39	SS40
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	7	<4	<4	7	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	9	10	9	5
Copper	mg/kg	20	43	14	21	18
Lead	mg/kg	15	15	22	17	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	18	8	10	8
Zinc	mg/kg	50	43	49	97	43

Acid Extractable metals in soil						
Our Reference		280517-61	280517-62	280517-63	280517-66	280517-67
Your Reference	UNITS	SS41	DS01	DS02	DUP03	DUP04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	<4	<4	8	7	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	4	14	11	12
Copper	mg/kg	14	8	18	23	33
Lead	mg/kg	30	5	16	17	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	5	8	15	20
Zinc	mg/kg	59	26	36	57	69

Acid Extractable metals in soil						
Our Reference		280517-68	280517-72	280517-73	280517-74	280517-75
Your Reference	UNITS	DUP05	C01	C02	C03	C04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference			21,22,23	24,25,26	27,28,29	30,31,32
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	8	5	8	7	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	11	12	13	14
Copper	mg/kg	28	18	27	18	17
Lead	mg/kg	19	14	19	16	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	4	12	7	8
Zinc	mg/kg	49	15	69	34	31

Acid Extractable metals in soil						
Our Reference		280517-76	280517-77	280517-78	280517-79	280517-80
Your Reference	UNITS	C05	C06	C07	C08	C09
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		33,34,35	36,37,38	39,40,41	42,43,44	45,46,47
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Arsenic	mg/kg	7	7	8	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	10	10	8	10
Copper	mg/kg	22	22	24	20	16
Lead	mg/kg	17	16	16	13	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	10	10	7	7
Zinc	mg/kg	52	52	49	53	33

Acid Extractable metals in soil			
Our Reference		280517-81	280517-82
Your Reference	UNITS	C10	C11
Date Sampled		15/10/2021	15/10/2021
Type of sample		Soil	Soil
Composite Reference		48,49,50	51,52,53
Date prepared	-	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021
Arsenic	mg/kg	5	5
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	13	12
Copper	mg/kg	14	16
Lead	mg/kg	17	18
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	8	8
Zinc	mg/kg	24	40

Moisture						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Moisture	%	18	13	17	20	14
Moisture	1	1	1			
Our Reference		280517-15	280517-17	280517-19	280517-54	280517-55
Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2	SS34	SS35
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Moisture	%	9.5	11	8.7	20	9.6
Moisture						1
Moisture Our Reference		280517-56	280517-57	280517-58	280517-59	280517-60
	UNITS	280517-56 SS36	280517-57 SS37	280517-58 SS38	280517-59 SS39	280517-60 SS40
Our Reference	UNITS					
Our Reference Your Reference	UNITS	SS36	SS37	SS38	SS39	SS40
Our Reference Your Reference Date Sampled	UNITS	SS36 15/10/2021	SS37 15/10/2021	SS38 15/10/2021	SS39 15/10/2021	SS40 15/10/2021
Our Reference Your Reference Date Sampled Type of sample	UNITS -	SS36 15/10/2021 Soil	SS37 15/10/2021 Soil	SS38 15/10/2021 Soil	SS39 15/10/2021 Soil	SS40 15/10/2021
Our Reference Your Reference Date Sampled Type of sample Composite Reference		SS36 15/10/2021 Soil	SS37 15/10/2021 Soil	SS38 15/10/2021 Soil	SS39 15/10/2021 Soil	SS40 15/10/2021 Soil
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared		SS36 15/10/2021 Soil 20/10/2021	SS37 15/10/2021 Soil 20/10/2021	SS38 15/10/2021 Soil 20/10/2021	SS39 15/10/2021 Soil 20/10/2021	SS40 15/10/2021 Soil 20/10/2021
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed	-	SS36 15/10/2021 Soil 20/10/2021 21/10/2021	SS37 15/10/2021 Soil 20/10/2021 21/10/2021	SS38 15/10/2021 Soil 20/10/2021 21/10/2021	SS39 15/10/2021 Soil 20/10/2021 21/10/2021	SS40 15/10/2021 Soil 20/10/2021 21/10/2021
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture	-	SS36 15/10/2021 Soil 20/10/2021 21/10/2021	SS37 15/10/2021 Soil 20/10/2021 21/10/2021	SS38 15/10/2021 Soil 20/10/2021 21/10/2021	SS39 15/10/2021 Soil 20/10/2021 21/10/2021	SS40 15/10/2021 Soil 20/10/2021 21/10/2021
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture	-	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture Moisture Our Reference	- - %	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7 280517-61	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5 280517-62	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8 280517-63	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8 280517-66	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3 280517-67
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture Our Reference Your Reference	- - %	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7 280517-61 SS41	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5 280517-62 DS01	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8 280517-63 DS02	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8 280517-66 DUP03	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3 280517-67 DUP04
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture Moisture Our Reference Your Reference Date Sampled	- - %	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7 280517-61 SS41 15/10/2021	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5 280517-62 DS01 15/10/2021	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8 280517-63 DS02 15/10/2021	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8 280517-66 DUP03 15/10/2021	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3 280517-67 DUP04 15/10/2021
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture Moisture Our Reference Your Reference Date Sampled Type of sample	- - %	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7 280517-61 SS41 15/10/2021 Soil	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5 280517-62 DS01 15/10/2021 Soil	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8 280517-63 DS02 15/10/2021 Soil	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8 280517-66 DUP03 15/10/2021 Soil	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3 280517-67 DUP04 15/10/2021 Soil
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date prepared Date analysed Moisture Moisture Our Reference Your Reference Date Sampled Type of sample Composite Reference	- - %	SS36 15/10/2021 Soil 20/10/2021 21/10/2021 9.7 280517-61 SS41 15/10/2021 Soil	SS37 15/10/2021 Soil 20/10/2021 21/10/2021 8.5 280517-62 DS01 15/10/2021 Soil	SS38 15/10/2021 Soil 20/10/2021 21/10/2021 8.8 280517-63 DS02 15/10/2021 Soil	SS39 15/10/2021 Soil 20/10/2021 21/10/2021 9.8 280517-66 DUP03 15/10/2021 Soil	SS40 15/10/2021 Soil 20/10/2021 21/10/2021 8.3 280517-67 DUP04 15/10/2021 Soil

Moisture						
Our Reference		280517-68	280517-72	280517-73	280517-74	280517-75
Your Reference	UNITS	DUP05	C01	C02	C03	C04
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference			21,22,23	24,25,26	27,28,29	30,31,32
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Moisture	%	17	13	22	15	11

Moisture						
Our Reference		280517-76	280517-77	280517-78	280517-79	280517-80
Your Reference	UNITS	C05	C06	C07	C08	C09
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		33,34,35	36,37,38	39,40,41	42,43,44	45,46,47
Date prepared	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Moisture	%	17	18	14	12	17

Moisture			
Our Reference		280517-81	280517-82
Your Reference	UNITS	C10	C11
Date Sampled		15/10/2021	15/10/2021
Type of sample		Soil	Soil
Composite Reference		48,49,50	51,52,53
Date prepared	-	20/10/2021	20/10/2021
Date analysed	-	21/10/2021	21/10/2021
Moisture	%	8.1	13

Maint

Asbestos ID - soils						
Our Reference		280517-1	280517-4	280517-6	280517-8	280517-12
Your Reference	UNITS	BH301/0.1	BH302/0.1	BH303/0.1	BH304/0.1	BH305/0.2
Date Sampled		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference						
Date analysed	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 30g	Approx. 30g	Approx. 40g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Asbestos ID - soils Our Reference		280517-15	280517-17	280517-19		
	UNITS	280517-15 BH306/0.1	280517-17 BH307/0.2	280517-19 BH308/0.2		
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH306/0.1	BH307/0.2	BH308/0.2		
Our Reference Your Reference Date Sampled	UNITS	BH306/0.1 15/10/2021	BH307/0.2 15/10/2021	BH308/0.2 15/10/2021		
Our Reference Your Reference Date Sampled Type of sample	UNITS -	BH306/0.1 15/10/2021 Soil	BH307/0.2 15/10/2021 Soil	BH308/0.2 15/10/2021 Soil		
Our Reference Your Reference Date Sampled Type of sample Composite Reference	UNITS - g	BH306/0.1 15/10/2021 Soil	BH307/0.2 15/10/2021 Soil	BH308/0.2 15/10/2021 Soil		
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date analysed	-	BH306/0.1 15/10/2021 Soil 22/10/2021	BH307/0.2 15/10/2021 Soil 22/10/2021	BH308/0.2 15/10/2021 Soil 22/10/2021		
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date analysed Sample mass tested	-	BH306/0.1 15/10/2021 Soil 22/10/2021 Approx. 55g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	BH307/0.2 15/10/2021 Soil 22/10/2021 Approx. 50g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	BH308/0.2 15/10/2021 Soil 22/10/2021 Approx. 50g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg		
Our Reference Your Reference Date Sampled Type of sample Composite Reference Date analysed Sample mass tested Sample Description	-	BH306/0.1 15/10/2021 Soil 22/10/2021 Approx. 55g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of	BH307/0.2 15/10/2021 Soil 22/10/2021 Approx. 50g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of	BH308/0.2 15/10/2021 Soil 22/10/2021 Approx. 50g Brown coarse- grained soil & rocks No asbestos detected at reporting limit of		

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Method ID	Methodology Summary
-------------	---
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH		Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
Date analysed	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	87	77
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	87	77
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	104	90
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	81	74
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	78	69
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	85	75
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	82	73
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	126	1	125	117	7	120	110

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4	
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021	
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	99	90	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	99	92	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	127	116	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	99	90	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	99	92	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	127	116	
Surrogate o-Terphenyl	%		Org-020	81	1	91	86	6	110	84	

QUALIT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	118
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	120
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	104
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	121	126
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	119	117
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	89
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	0.09	57	116	108
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	120	1	118	115	3	103	102

QUALITY CONTR			Du	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	108
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	124	114
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	99
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	118
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	118
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	111
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	116
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	121	123
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	123	114
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	90
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	98	1	102	106	4	96	90

QUALITY CONTR		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			[NT]	56	20/10/2021	20/10/2021		20/10/2021	
Date analysed	-			[NT]	56	20/10/2021	20/10/2021		20/10/2021	
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	110	
НСВ	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	106	
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	77	
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	122	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	118	
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	117	
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	116	
Endrin	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	119	
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	114	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	82	
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	56	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	[NT]	56	101	96	5	92	

QUALITY CONT	QUALITY CONTROL: Organochlorine Pesticides in soil							Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	75	20/10/2021	20/10/2021			[NT]
Date analysed	-			[NT]	75	20/10/2021	20/10/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	75	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	75	103	95	8		[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4		
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021		
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	99		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	114		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	103		
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	130		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	120		
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	103		
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	106		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	98	1	102	106	4	96	90		

QUALITY CONTRO	L: Organoph			Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-				56	20/10/2021	20/10/2021		20/10/2021	
Date analysed	-				56	20/10/2021	20/10/2021		20/10/2021	
Dichlorvos	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	99	
Dimethoate	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	126	
Fenitrothion	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	107	
Malathion	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	130	
Chlorpyriphos	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	118	
Parathion	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	111	
Bromophos-ethyl	mg/kg	0.1	Org-022		56	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	111	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		56	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025		56	101	96	5	92	

QUALITY CONTRO	L: Organopł	nosphorus	Pesticides in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				75	20/10/2021	20/10/2021			[NT]
Date analysed	-				75	20/10/2021	20/10/2021			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		75	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		75	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		75	103	95	8		[NT]

QUALIT	QUALITY CONTROL: PCBs in Soil							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4		
Date extracted	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021		
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021		
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	116	108		
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Surrogate TCMX	%		Org-021	106	1	102	106	4	96	90		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duj	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	280517-4	
Date prepared	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021	
Date analysed	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021	
Arsenic	mg/kg	4	Metals-020	<4	1	6	7	15	103	98	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	102	87	
Chromium	mg/kg	1	Metals-020	<1	1	9	11	20	97	85	
Copper	mg/kg	1	Metals-020	<1	1	17	19	11	100	108	
Lead	mg/kg	1	Metals-020	<1	1	13	15	14	103	93	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	103	117	
Nickel	mg/kg	1	Metals-020	<1	1	11	12	9	99	88	
Zinc	mg/kg	1	Metals-020	<1	1	44	46	4	98	98	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			[NT]	56	20/10/2021	20/10/2021		20/10/2021	
Date analysed	-			[NT]	56	21/10/2021	21/10/2021		21/10/2021	
Arsenic	mg/kg	4	Metals-020	[NT]	56	7	7	0	103	
Cadmium	mg/kg	0.4	Metals-020	[NT]	56	<0.4	<0.4	0	102	
Chromium	mg/kg	1	Metals-020	[NT]	56	8	8	0	98	
Copper	mg/kg	1	Metals-020	[NT]	56	20	20	0	102	
Lead	mg/kg	1	Metals-020	[NT]	56	15	16	6	103	
Mercury	mg/kg	0.1	Metals-021	[NT]	56	<0.1	<0.1	0	111	
Nickel	mg/kg	1	Metals-020	[NT]	56	9	9	0	100	
Zinc	mg/kg	1	Metals-020	[NT]	56	50	52	4	99	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	75	20/10/2021	20/10/2021		[NT]	
Date analysed	-			[NT]	75	21/10/2021	21/10/2021		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	75	6	6	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	75	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	75	14	10	33	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	75	17	19	11	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	75	15	14	7	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	75	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	75	8	9	12	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	75	31	46	39	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

m∕ártens

۲.

. . .

consulting engineers since 1989

SOIL ANALYSIS CHAIN OF CUSTODY FORM

					· · ·		Project										
Name	P2007700	: 21 Vince	ents Road, H	Kurrajon	ng, NSW								·			_	
Martens Contact Officer	Dean Shi							Contact	Email		dshi@marte	ns.com.au					
	Sample D	ate	15	Octobe	er 2021		Dispatch Date	15 Octob	per 20:	21	Turnaround	lime		Standard			
Sampling and Shipping	Our Refer	ence	P20	0077000	COC05V01			Shipping	Meth	bd		Hand	Pos		Courier	x	
	On Ice (X)	x	No	o lce (X)		Othe	· (X)			,,			i			
· · · · · · · · · · · · · · · · · · ·							Laboratory							-	1		
Name	EnviroLab)													•	- ,	
Sample Delivery Address	12 Ashley	Street, C	Chatswood								•			•	•	:	
Delivery Contact	Name	Aileen		Phone		9	910 6200	Fax			Email s	amplerec	ereceipt@envirolabservices.com.				
Please Send Report By (X)	ise Send Report By (X) Post Fax Email X Repo								dress	·	ngiffin@martens.com				Ţ,		
	• •	·					- I - · ·										

Triple Sample ID HOLD Combo 6a HM OCP/OPP BTEX TRH Composite BH301/0.1 (D.2) Х 2 BH301/0.5 X Enviroiab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 X BH301/1.2 ENVIROUAB BH302/0.1 Х 4 61012 BH302/0.6 Х Job No: 7 280517 BH303/0.1 Х 6 Х BH303/0.5 3 Date Received: 15/10/21 BH304/0.1 Х Time Received: 17/00 Received By: c/-1 Temp: Cool/Ambient Cooling: Cool/Copack BH304/0.5 Х 9 BH304/1.0 Х 10 BH304/1.5 X BH305/0.2 X 12 BH305/0.7 Х Security: Intact/Broken/Mond 11 BH305/1.4 Х 14 15-BH306/0.1 Х BH306/0.8 χ 16 BH307/0.2 Х 17 BH307/1.0 Х 12 - BH308/0.2 Ń -19-BH308/1.0 Х 20 C01 21 SS01 Х Х .

Head Office

Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

> mail@martens.com.au > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890

SOIL ANALYSIS CHAIN OF CUSTODY

•																																	
. 0°2 . DS01						5-6 SS36	5-2-2-2225										4 1 SS21	•		<u>37</u> SS17		34 SS14		52 SS12		29 SS09						<u>22</u> SS02	Sample ID
									C11					C09		C08		C07		C06	<u> </u>	C05	<u> </u>		C04		C03			C02			Triple Composite
																																	HOID
														-																	_		Combo 6a
×	×	×	×	×	×	×	×	×	×	ł	;	×		×		×		×	:	×		×			×		×		:	×			HM
×	×	×	×	×	×	×	×	×	×	1	;	~	-	×		×		×	:	×		×			×		×		:	×		-	OCP/OPP
																																	BTEX
																																	TRH

;

2

2

.

• :

•••

ļ

SOIL ANALYSIS CHAIN OF CUSTODY

Sample ID	Triple Composite	HOLD	Combo 6a	нм	OCP/OPP	BTEX	TRH
63 DS02				X	X		-
67 DUPOI		X					
65 DUP02		X					
66 _ DUP03				х	X		
67 DUP04				X	X		
68 DUP05				X	X		
69 DUP05						X	
フリ Trip Blank						X	X
-1 00 100			· · · ·				•

71 55-42

- .

. .

